Probabilistic Methodologies for Autonomous Mobile Robot Localization

Speaker

Dr. Akin Tatoglu | tatoglu@hartford.edu Assistant Professor, Mechanical Engineering

Autonomous Mobile Robotics Research Group | D-121

UNIVERSITY OF HARTFORD

COLLEGE OF ENGINEERING. TECHNOLOGY, AND ARCHITECTURE

December 7th, 2017

Introduction Research Objectives Mapping Model Generation Motion Models MonoSLAM-R Future Agenda Depth Initialization Teaching Exp.

Autonomous Mobile Robotics Research Group

- **What do we do?** We are a research group focusing on design and development of robotics, industrial automation systems and advanced mechanisms.

- **Who are we?** We have 32 active members from all majors.

- **What do we offer?**

Our group offers free courses about:

- Robotics Design,
- Embedded Control,

Autonomous Mobile Robotics

• Software Development (Arduino, Raspberry Pi, Matlab)

which will be useful for your education and future scientific research.

Our lab is at D-121.

Introduction Research Objectives Mapping Model Generation Motion Models MonoSLAM-R Future Agenda Depth Initialization Teaching Exp.

Autonomous Mobile Robotics Research Group

We have 32 active members from all majors.

- **We welcome all experience levels.**
- **If you would like to join our meetings, please drop your name and email address.**

Research Objectives Mapping Model Generation Motion Models MonoSLAM-R Future Agenda Depth Initialization Teaching Exp.

Today, we will talk about

A) Our research projects,

- B) Fundamental Robotics Concepts:
	- Feedback
	- Sensor Fusion
	- **Perception**
	- Platforms
	- Advanced Locomotion
	- Basic Localization
- C) Probabilistic Localization and Mapping D) Future of Engineering Education E) Q&A

Research Objectives Mapping Model Generation Motion Models MonoSLAM-R Future Agenda Depth Initialization Teaching Exp.

Our platforms: "We create!"

Advanced Sensor S Differential Drive 3D Mapping **Exploration Missio**

How can I start ? Let's start with couple concepts…

Research Objectives Mapping Model Generation Motion Models MonoSLAM-R Future Agenda Depth Initialization Teaching Exp.

Sensor Suite

Bionic Egg: Ruggedized Remote Sensor Suite for Impact and Ambient Conditions

Design Challenges:

- a) 2 2.7inches in length
- b) 1.5 2 inches' wide
- c) 5 inch average circumference
- d) 114 grams of approximate weight

Students: Electrical Engineering: Simon Darius | Computer Engineering: Eric Jacobson, Mechanical Engineering: Theresa DeFreitas, Maegan Hall, Jerrod Sutcliffe Paper: "Bionic Egg: Sealed mobile sensor packaging design with adaptive power consumption, E. Jacobson, S. Darius, A. Tatoglu and P. Mellodge, IEEE Long Island Systems, Applications and Technology Conference (LISAT), Farmingdale, NY, 2017, pp. 1-6. 2017"

Research Objectives Mapping Model Generation Motion Models MonoSLAM-R Future Agenda Depth Initialization Teaching Exp.

Swarm Robotics

Vibron: A new approach to the coordination of multirobot systems which consist of many small physical robots. No moving parts!

They are designed to work collectively and in tune with each other.

New Design: 3D Printed **Body**

Primary focus is pointed at controlling the motion of the robots and possibly make them communicate with each other

Introduction Research Objectives Mapping Model Generation Motion Models MonoSLAM-R Future Agenda Depth Initialization Teaching Exp.

Environmental Decisions: Harsh Environments

Unmanned Underwater Vehicle: Create a simple autonomous robot that travels underwater following predetermined cube like path.

Bill-of-Materials

- Pelican 1020 Waterproof Micro Case, Arduino UNO, Motor Drive Shield, 12V Submersible Water Pumps
- Plastic Submersible Cord Grip, Adafruit Water Flow Sensors, Zip ties, Styrofoam

Students: Jason Carter, Jamie Dolan, Tiffany Pauley, Troy Solt, & Jeremy Stager

Introduction Research Objectives Mapping Model Generation Motion Models MonoSLAM-R Future Agenda Depth Initialization Teaching Exp.

Perception

3D Robotic Arm Scanner: A device that uses a robotic arm along with a hand held scanner to make digital 3D model of objects.

Students: Mason Paul ME, Gabriel Valero ME, Hector Ortiz CET, Justin Simko ME

Research Objectives Mapping Model Generation Motion Models MonoSLAM-R Future Agenda Depth Initialization Teaching Exp.

Locomotion: Alternate Mechanisms

OmniBot: SPARK: A ground vehicle with use of mecanum wheels that can move in all directions.

Design Iterations

Working Principle 21 18 12 straight ahead 18 12 concerning urn of rear axis

Students: Nikhil Rametra, Yeshwanth Kumar Abburi

Zero Radius Rotation

Can nature help me ? Of course! Robotics and Biomimetic.

Research Objectives Mapping Model Generation Motion Models MonoSLAM-R Future Agenda Depth Initialization Teaching Exp.

Locomotion: Mimicking Nature

SpiderBot: Locomotion of the robot imitating spider

Students: Gabriel Valero • Fasi Mohammed • Saranjog S. Sukhija

Research Objectives Mapping Model Generation Motion Models MonoSLAM-R Future Agenda Depth Initialization Teaching Exp.

Robotics and Biomimetic

MicroSwimmer: It has long been known that swimming at the microscale requires techniques that are very different from those used by macroscale swimmers, such as fish and humans [1].

- Can we use these techniques to develop a robot ? Locomotion of the robot imitating spider walk.

Propulsion Control Structure Design for Micro Underwater Robot, IEEE International Energy and Sustainability Conference'2015

Mapping o
Naskal Ca Model Generation CMPISLAM o Landmarks Concluding Remarks

Robotics and Biomimetic

Microorganisms are able to swim at low Re using a variety of techniques[1], none of which look like those used by macroscale swimmers.

All of the swimming methods utilized by microorganisms are fairly inefficient, which is not a problem because microorganisms' source of energy (food) is so plentiful.

20 µm and have a diameter around 0.25 µm

Propulsion Control Structure Design for Micro Underwater Robot, IEEE International Energy and Sustainability Conference'2015

Mapping o
Naskal Ca Model Generation CMPISLAM o Landmarks Concluding Remarks

Robotics and Biomimetic

Tatoglu A., Propulsion System for Micro Underwater Robot, IEEE International Energy & Sustainability Conference, 2015

Can we build a self-driving car? We are working on it!

Mapping o
Naskal Ca Model Generation CMPISLAM o Landmarks Concluding Remarks

Full Scale Self-Driving Car Project

Mapping o
Naskal Ca Model Generation CMPISLAM o Landmarks Concluding Remarks

Full Scale Self-Driving Car Project

Phase 1: [Completed]

Brainstorming and designing the system that will be implemented with the cart. It also must take all safety measures into account. [Completed.]

Phase 2: [Mid-Spring Semester]

Is when the designed system will actually be implemented with the golf cart. At this point the golf cart will be made remote controlled. This this will allow for testing of the systems implemented in a safe and controlled manner.

Phase 3: [Summer and Fall Semesters] sees the remote controls being handed off to the autonomous systems. Trials will be run under different circumstances the golf cart will encounter, to ensure proper and safe operation.

Cars are good, they can't even swim \odot Well, we have a solution for this!

Mapping o
Naskal Ca Model Generation CMPISLAM o Landmarks Concluding Remarks

Multi Terrain Vehicles

.... Hovercraft can travel over almost any non-porous surface:

- even or uneven terrain sandy and icy grounds
- Ideal for disaster relief situations

Landing Craft Air Cushion (LCAC) is delivering supplies to the citizens of Meulaboh Indonesia after the 2004 Indian Ocean tsunami.

A hovercraft docking to a ship.

Mapping o
Naskal Ca Model Generation CMPISLAM o Landmarks Concluding Remarks

Alternate Locomotion: Hovering

- The hovercraft's ability to distribute its laden weight evenly across the surface below it makes it well suited to the role of amphibious landing craft.
- Hovercrafts can transport materials from ship to shore and can access more than 70% of the world's coastline, as opposed to conventional amphibious landing craft, which are only capable of landing along 17% of that coastline.

Mapping o
Naskal Ca Model Generation CMPISLAM o Landmarks Concluding Remarks

Control: Advanced Dynamics

An Hovercraft is controlled by commands below.

Angular Displacement

MOTION COMMANDS:

- STOP[1s]
- MOVE FORWARD [2 s]
- TURN LEFT [0.5 s]
- MOVE FORWARD [2 s]
- STOP[1s]

Mapping o
Naskal Ca Model Generation CMPISLAM o Landmarks Concluding Remarks

Control: Motion Planning

- Initial Simulations: Motion Planning and Execution
- Different capture radius values are tested.
- Rotation takes time and not accurate

Windheuser K., ASME International Mechanical Engineering Congress and Exposition, Volume 4B: Dynamics, Vibration, and Control, 2016

Mapping o
Naskal Ca Model Generation CMPISLAM o Landmarks Concluding Remarks

Alternate Mechanisms

Mapping o
Naskal Ca Model Generation CMPISLAM o Landmarks Concluding Remarks

Alternate Mechanisms

RESULTS:

- Momentum wheel substantially increased **rapid angular displacement** ability of hovering body.
- System is **less sensitive** to the terrain/ground shape.

Controller Improvements with a more advanced system model

- Blows the air underneath the craft
- Rubber cushion–skirt—traps the air and inflates

The velocities on x and y axes are given by

$$
\dot{x} = u\cos\psi - v\sin\psi \tag{1}
$$

$$
\dot{y} = u \sin \psi + v \cos \psi \tag{2}
$$

ψ: is projection angle between frames. u (surge speed) and v (sway speed) represent the velocities on x and y directions. Ω_H : angular velocity of the overall body Ω_H is equal to first derivative of vehicle orientation $ψ$ given by

$$
\dot{\psi}=\varOmega_{H}
$$

Controller Improvements with a more advanced system model

The controller input u_1 is the sum of forward thruster fan forces which is given by

$$
u_1 = F_L + F_R = m\dot{u} - m\nu\Omega_H + d_\nu u
$$

This follows the second equation on the sway direction:

 $m\dot{v} + m u\Omega_H + d_v u = 0$ d_v : the coefficient of viscous friction. Second controller input u_2 is given by

$$
u_2 = \frac{r}{2}(F_L - F_R) + M_w r = J \dot{\Omega_H} + d_r \Omega_H
$$

J: is the overall vehicle inertia, M_w : rotational torque released by the flywheel d_r : the coefficient of rotational friction.

Controller Improvements with a more advanced system model

- Feedback Control system of the differential drive forward thrusters
- Flywheel break engages at the waypoint.

Controller Improvements with a more advanced system model

Fig.8 Object Tracking to Generate the Path followed

Fig.12 Rotation with flywheel and fans, feedback controller on after rotation

It looks complicated. Is there an easier way to learn the control logic? Yes, of course! Pyro

Mapping o
Naskal Ca Model Generation CMPISLAM o Landmarks Concluding Remarks

Educational Platform: Pyro

Electromechanical Design

Robot Controller

Trinity College, Firefighting Robot Competition 2017.

Students: Electrical Engineering: Heather Volkens, Mechanical Engineering : Yousef Bahman Ali Alsulaiman Bryant Miranda

Problem Statement

The tournament expects Pyro to avoid obstacle, solve the maze and extinguish a fire with fastest amount of time possible.

Solution

Using highly sensitive sensors like Ultrasonic sensors to avoid the obstacles and any walls present in Pyro's way, Left/Right hand rule so that Pyro follows the walls until it solves the maze and Heat/IR sensor to detect the fire and use a blowing fan to extinguish it.

How about UAVs? Yup!! It is time!

UAV Path Planning

Localization algorithms are also used to follow a predetermined path.

High Altitude: Mostly Linear Path Plan

(This problem is kind of solved.)

Continuously Varying Path Plan: Fixed distance from ground

Obstacle Avoidance

During the mission, path plan needs to be updated locally once an obstacle is met.

Mapping o
Naskal Ca Model Generation CMPISLAM o Landmarks Concluding Remarks

Mission Types

Constant vs Variable input signal

- Linear Path Plan vs Continuously Varying Path Plan
- Obstacle avoidance, Rapid Moving Object tracking
- Little Disturbance vs High Disturbance (i.e. wind)

[1] Aggressive Maneuvers for UAV Flight, GRASP Lab, UPenn, Mellinger, IJRR 2012

[2] High-speed Flight in an Ergodic Forest, MIT, Karaman , ICRA 2012

Stereo Imaging: Mimicking Human Vision System

How can a UAV/robot perceive the environment ? Visual Navigation: It can perceive the environment including depth with a stereo camera system, same as human beings.

Visual Navigation

For a UAV and its visual navigation system: We want to develop a 2 DOF gimbal controller for continuously variable controller input for mission types discussed.

HOW CAN WE DECIDE GIMBAL CONTROLLER PARAMETERS IF WE ACCOUNT FOR:

Landmark Tracking Quality

Steady State Error

LQM(Landmark Quality Metric)

 e_{ss} (error, steady state)

Energy Consumption

 W att – second

Landmark Detection Algorithms

Sobel, Roberts, Canny, LoG, Prewitt, FAST(Features from Accelerated

Segment Test)

Wait!!! I am lost! What is a landmark ? OK, let's start again, from the beginning.

What is the common task for all the robots discussed ? If we ask them to go to the nearest Starbucks and get a coffee…

Why is Localization important?

• The first question required to be answered for all these robotic systems is "Where am I? "

Where am I

Current State of Research Efforts

- SLAM(Simultaneous Localization and Mapping) is a stochastic(probabilistic localization algorithm.
- It is defined as a chicken and egg problem:
	- Robot moves, generates a map.
	- Then try to localize itself within this map.
	- By using this new location, it decides where to go.
	- And again generates a map to localize itself in it.
- It corrects itself and reduces uncertainty.
- Currently, SLAM is the most advanced localization algorithm.

Mapping o
Naskal Ca Model Generation CMPISLAM o Landmarks Concluding Remarks

Current State of Research Efforts

• SLAM(Simultaneous Localization and Mapping) methodology offers a probabilistic solution as an answer to the localization problem [Durrant-Whyte, 2006].

Localisation problem may be formulated as computing the probability distribution

 $P(x_k | z_{0,k}, \mathbf{u}_{0,k}, \mathbf{m})$

Mapping o
Naskal Ca Model Generation CMPISLAM o Landmarks Concluding Remarks

Current State of Research Efforts

- There are various solution approaches
	- Stereo SLAM
	- RGBD SLAM [Kinect Like Sensors]
	- tinySLAM
	- SLAM with RBPF [Non-linear Solutions]
	- Visual Odometry [Camera + Odometry]
	- MonoSLAM [Single Camera Solutions]

What are the applications ? OK, let's see the applications and finalize with a simple example.

Introduction Mapping Model Generation CMPISLAM Concluding Remarks

Mapping and Localization

GPS + MAP

When there is a GPS and a map, localizing a robot is easy.

Courtesy of Google and Bing

Mapping o
Naskal Ca Model Generation CMPISLAM o Landmarks Concluding Remarks

Accuracy of GPS

• Junior, DARPA Challenge: 3D Point Clo *GPS, Known map And multi sensors*

Velodyne laser Applanix INS SICK LMS laser Riegl laser WO **BOSCH Radar DMI IBEO** laser **SICK LDLRS laser Junior Sensor Suite Localization Laser typical accuracy: +/- 2cm GPS Error: ~2-20 meters**

Junior: The Stanford Entry in the Urban Challenge [Montemerlo, 04]

Mapping o
Nashal Ca Model Generation CMPISLAM o Landmarks Concluding Remarks

Indoor robot: No GPS

• Indoor Localization

Indoor Ground Robot

No GPS, Known map And multi sensors

IMU+Camera Navigation

JAMES: SIT Indoor Quad-rotor University of Minnesota

GPS-denied navigation

No or Obsolete Map

• Mine and disaster area search missions

Snake like Search Robot Mining Area

Rescue Robot: Gemini-Scout

Tohoku University

No GPS,

No MAP,

Known

input

controller

Localization at unstructured environments

Mapping Model Generation CMPISLAM Concluding Remarks

Unexplored areas

• Rover's planned path and navigation camera image

Localization at extraterrestrial planets (Courtesy of NASA)

Sooo, is it possible to localize a robot without GPS? Let's discuss a case study.

• If we have a map and if we know velocity of a robot, can we find where it is ?

Illustration of a map with three doors A, B and C from left to right. Distances in between them is known(because we have a map).

Probabilistic Localization

• Robot's current position is unknown. It is lost!*

How do robots navigate?

- Robot's camera sees a door.
- Where can it be?

How do robots navigate?

- Robot keeps moving. Couple seconds later….
- It see another door.
- Now, where can it be? **Where am 1?**

How do robots navigate?

- Robot keeps moving. Couple seconds later….
- It see another door.
- Now, where can it be? **Where am 1?**

Introduction **Mapping** $M = \frac{1}{2}$ Model Generation CMPISLAM o Landmarks Concluding Remarks

Are images sufficient?

3D Printed BiPad Robot

Blurred Image

Humanoid

Are images sufficient ?

• Images might not be sufficient for an accurate localization. Especially for self driving cars.

3D Point Cloud Attributes:

Introduction **Mapping** $M = \frac{1}{2}$ Model Generation CMPISLAM o Landmarks Concluding Remarks

3D Point Clouds

Point Clouds and Intensity

[VIDEO-1, Fly Through]

Introduction **Mapping** $M = \frac{1}{2}$ Model Generation CMPISLAM o Landmarks Concluding Remarks

Other Applications

Embedded Virtual CAD Models

[VIDEO-2, Elm Street]

Mapping o
Naskal Ca Model Generation CMPISLAM o Landmarks Concluding Remarks

Robotics Research and Education

- 1) One of the most funded topic:
- National Robotics Initiative (NRI) The realization of co-robots acting in direct support of individuals and groups
- 2) Future of Engineering and Science
- A Roadmap for US Robotics- From Internet to Robotics
- New multidisciplinary departments
- 3) Self-Directed Learning will be the key of future

education since most of the text books will be obsolete in couple years.

4) Gap between science and branches of engineering is closing.

Implementing Self Learning Skills with Multidisciplinary Robotics Courses, Tatoglu A., Russell I., ASEE Mid-Atlantic Section Conference, Hofstra University, 2016

Acknowledgements:

I would like to thank you ASME team, especially Mr. Ziair Deleon, for inviting me.

I also would like to thank ME Department and all students who were part of the projects.

INTRODUCTION INITIAL ANALYSIS SYSTEM DESIGN EXPERIMENTAL RESULTS **CONCLUSION**

Thanks!

If you would like to learn more about autonomous mobile robots, please join our email list.

Dr. Akin Tatoglu tatoglu@hartford.edu

Autonomous Mobile Robotics Research Group | D-121

"We create!"

UNIVERSITY OF HARTFORD

COLLEGE OF ENGINEERING, TECHNOLOGY, AND ARCHITECTURE