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Abstract— Light Detection and Ranging (LIDAR) scans are 

increasingly being used for 3D map construction and reverse 
engineering. The utility and benefit of the processed data 

maybe enhanced if the objects and geometry of the area 

scanned can be segmented and labeled. In this paper, we 

present techniques to model the intensity of the laser reflection 

return from a point during LIDAR scanning to determine 
diffuse and specular reflection properties of the scanned 

surface. Using several illumination models, the reflection 

properties of the surface are characterized by Lambertian 

diffuse reflection model and Blinn-Phong, Gaussian and 

Beckmann specular models. Experimental set up with eight 
different surfaces with varied textures and glossiness enabled 

measurement of algorithm performance. Examples of point 

cloud segmentation with the presented approach are presented. 

I. INTRODUCTION 

OINT clouds generated using Light Detection and 

Ranging (LIDAR) systems can cover large areas and 

contain many details. [1],[2]. Identification and delineation 

(segmentation of the image or point cloud) of various objects 

in the point data is of significant consequence to various 

downstream applications. For example, an autonomous 

mobile robot working in an unstructured environment can 

identify objects of interest as well as their location and sizes.  

Classification of terrains generated from equipment mounted 

on planes into forests, desert, and wetlands enable quick 

mapping of physical features . Some research exists for 

extracting surface features, terrain classification and obstacle 

detection using Gabor filter banks and using LIDAR data to 

perceive the difference between obstacle and other 

vegetative objects (i.e. rock and grass.) [3], [4], [10] 

Applying segmentation algorithms  to locate and label 

objects in an environment may be crucial in many tasks. 

Analyzing objects in an environment only from geometrical 

point of view could not be sufficient. Compliant foliage and 

brush may be geometrically considered as an obstacle 

however an autonomous ground vehicle could safely drive 

over it [10]. Shiny objects like mirrors reflects the light on 

unpredicted directions and cause noise in LIDAR ranging 

data and camera image data[5]. There are several current 

methods to segment attributes from point clouds from a 

geometrical point of view [2], [6].  

 
Akin Tatoglu is a doctoral student  and a research assistant in the 

Department of Mechanical Engineering Stevens Institute of Technology, 

Hoboken, NJ 07030 (Phone: 201-216-8215; fax: 201- 216-8963; e-mail: 
atatoglu@ stevens.edu).  

Dr. Kishore Pochiraju is an Associate Professor in Mechanical 
Engineering and the director of the Design & Manufacturing Institute at 

Stevens Institute of Technology, Hoboken, NJ 07030. 

In prior efforts, aerial vehicle and satellite reflectance data 

were used to define a bidirectional distribution function. 

This function was utilized to determine the type of the 

terrain surface and albedo values of surfaces under different 

weather and seasonal conditions. As a result, terrain surfaces 

were classified as forest, desert, wetland etc. [6].  

Use of reflection intensity which is generally available 

from many LIDAR ranging devices may assist in the 

segmentation and labeling task. The behavior of the light 

propagation could be listed as refraction, reflectance, 

absorption, scattering, and polarization [7]. The reflected 

light from incident laser light is sensed in a LIDAR. 

Reflectance measures the ratio of amount of radiation sent to 

the material surface over the amount received by the LIDAR 

equipment. Utilizing reflection intensity maps to segment 

materials or structures could improve the overall 

performance of different types of applications including 

automatic cruise control, agricultural analysis, weather 

analysis, hazardous area analysis, terrain type detection etc 

[8],[9],[10]. However, the reflection intensity depends upon 

several factors including the distance to the object, view 

angle and the surface characteristics.  

In this paper, we explore the use of illumination models 

derived from computer graphics to characterize the LIDAR 

reflection intensity data. Lambertian diffuse reflection [11] 

along with Blinn-Phong [12], Gaussian [13] and Beckmann 

[14] specular reflection models were used to characterize the 

reflection characteristics of the underlying scanned surface. 

The diffuse reflection coefficient is shown to be useful for 

segmenting large point clouds.  

II.  LIDAR REFLECTION RETURN MODELS 

Many time of flight LIDAR scanners provide the laser 

reflection intensity observed by the photo-detector. The 

intensity of reflection return depends, in general, upon the 

distance to the object, the angle between the surface normal 

and the incident laser ray and the glossiness of the surface.  

We examine the reflection intensity data in a typical 3D 

point cloud to characterize the diffuse and specular 

reflectivity characteristics of the scanned surface. In 

computer graphics applications where realistic shading of 

synthetic surfaces is desired, models such as the Blinn-

Phong [12], Gaussian [13] and Beckmann [14] are often 

used for rendering surfaces. These models employ 

parameters depicting the material behavior. The main 

hypothesis of this paper is to characterize a set of “best-fit” 

parameters that represent the scanned surface and use the 

Point Cloud Segmentation with  

LIDAR Reflection Intensity Behavior 

Akin Tatoglu &  Kishore Pochiraju 

P 



  

parameter set as the attributes in a segmentation algorithm. 

Both spatial and reflection property similarities in the point 

cloud enable segmentation of the point cloud and potentially 

labeling after suitable comparison with known material 

signatures. The point-light source surface illumination model 

of particular interest in this context. 

In this analysis we consider Blinn-Phong [12] model for 

analysis that incorporates both the Lambertian (diffuse) and 

specular reflection components as well as Gaussian [13] and 

Beckmann [14] models to model specular reflection 

properties on textured surfaces. The Lambertian reflection 

model defines the diffuse reflection for the dull, matte 

surfaces.  The amount of intensity reflected by these types of 

materials is independent of the relationship between the 

view angle and the surface normal. We model the reflection 

intensity model for single wavelength incident ray with 

diffuse and specular components as given in (1).  
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We define the R as the ratio of the reflected to incident 

intensities of the light at a frequency . As the incident ray 

cast by the LIDAR is typically tuned to a single infrared 

frequency and the output of the photo detector sensing the 

reflected ray is tuned to the same frequency, the scalar R is 

assumed as the measurement obtained from the LIDAR as 

the reflection intensity of the return. The measurement is 

normalized on a 0 - 1 scale.       denotes the attenuation of 

the reflection intensity due to the distance between the 

LIDAR and scanned surface. The divergence in the incident 

beam causes substantial range dependent attenuation  

We adopted three models to characterize the specular 

reflection characteristics of the scanned materials. First we 

used the Blinn-Phong model for which the specular 

reflection component    is given in (2). The model requires 

two parameters,     and exponent, n.  
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Blinn-Phong model uses the half way vector, H, which is 

defined as the mean of light and view vectors  [15]. In the 

case of a LIDAR, L and V are nearly coincident and hence L 

= H = V.  Therefore, for this case Cos = N.H = N.L. 

Therefore, the Blinn-Phong and Phong models produce 

identical results for this case. 
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Gaussian and Beckmann models consider the local surface 

texture using a micro-facet analogy.  The Gaussian 

distribution defines the specular reflection as in (4). One 

parameter, m {0, 1}, represents the texture characteristics.   

The specular reflection component for the Beckmann 

distribution is shown in (9). This model also requires one 

parameter, B, to describe the texture of the material.   
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III. EXPERIMENTAL MATERIAL CHARACTERIZATION 

An image-registered 2D LIDAR system [10] mounted on 

a rotating frame was used to generate point clouds of several 

materials with varying texture and reflectivity.  The scanning 

system generated the coordinate, color information and 

reflection intensity as {X, Y, Z, I, R, G, B} at each scanning 

point.  The LIDAR used for this analysis was a SICK LMS-

200 and a camera with 1280x960 resolution is registered to 

the scanning plane. The LIDAR generated {X, Y, Z, I} data 

elements and the camera provided the corresponding {R, G, 

B} color data in real-time.  

The experimental setup used included several material 

swatches (about 60 cm x 60 cm) in area were placed at 

various distances in front of the LIDAR and the point clouds 

were generated with reflection intensity and color 

information. The luminosity component from the {R,G,B} 

data was also analyzed but not presented in this paper as no 

correlation was detected between the laser reflectivity ( 905 

nm infrared wavelength) and luminosity in the visible color 

spectrum.  

 
Fig. 1. Incident and reflected rays during LIDAR ranging. Rough 
surfaces may have local variations in the normal vector leading to loss 

in reflection intensity  
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In setup-1, three different materials were used and point 

clouds were generated at six distances - 1.6 m, 4 m, 6.4 m, 

8m, 12m and 20m. The distance effects are measured by 

using a small target for which the view angle variation is 

minimal as shown in Fig. 2. 

A second experimental setup was used to study the effect 

of view angle. In this experiment, each material swatch is 

translated from the center of the LIDAR by known distances 

(     ) and thereby varying the view angle from 0° to 40°. 

A distance of 6 m was used for position-A and the    value 

for position-E was 4.59m.  At these distances, the effect of 

     is assumed to be minimal due to the changes in the 

range.  

IV. CHARACTERIZATION OF REFLECTION PROPERTIES 

Fig. 4 shows the intensity attenuation due to the distance 

between the LIDAR and the surface being scanned. This 

attenuation can be attributed to the beam divergence and the 

incident spot diameter grows with the distance from the 

scanner. The results in Fig.  4 can be used to determine      

in (2). The figure shows that between 4 and 8 meters the 

intensity decreases linearly.   

 

Aluminum (Al), Copper (Cu), Foam (grey and white), Steel 

and Wood swatches were placed at a nominal distance of 6m 

and reflection intensity values were obtained using the 

LIDAR. The reflection values for each of the material 

swatches were used to determine the best fit parameters for 

the Blinn-Phong, Gaussian and Beckmann models.    Fig. 5 

and 6 show the LIDAR reflection intensity measurements 

with view angle for Al and black foam sheets. Reflection 

intensity varies with the incident angle and considerable 

variability is also evident in the reflection intensity for points 

with the same view angle. While the coarse change in the 

intensity with view angle is expected for objects with 

specular reflection characteristics, the variability is attributed 

to the local surface normal changes in the thin aluminum 

sheet used for experimentation. Any aberration or 

imperfection changes the normal estimate and can lead to the 

variability in reflection intensity. The Gaussian and 

Beckmann models use a micro-facet analogy to account for 

such variations. Characterization of local surface normal 

variations may be important to properly characterize the 

reflection intensity. The black foam board used in Fig.  6 has 

smooth rigid surface with minimal surface distortions . The 

reflection intensity is lower for the board and no dependence 

is evident on the view angle indicating diffuse reflection.  

 
Fig. 2. In experimental setup-I, material swatches were placed directly 
in front of the LIDAR. The rotation of the scanning mirror causes the 

view angle (V.N) to change for various points on the surface. 

However, the variation of the view angle is small, about 2-3
o
. 
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Fig. 3. In experimental setup-II, the view angle is varied considerably 

by repositioning the swatch. 

 
Fig. 4. Intensity dependence on the distance t o the scanner 

 
Fig. 5. Raw intensity data for Al swatch. Intensity variations are due 

to view angle changes and local surface normal variations. 



  

Fig. 7 shows the diffuse reflection coefficients for 

various materials. The coefficient is relatively constant 

with the grey foam showing increased absorbance 

compared to the other materials.  Fig. 8 shows coefficient 

values for  K
BP

 in (2) and the shiny materials show higher 

coefficient than the dull materials as expected.  

 

Experiment setup –II was used to determine the effect of 

view angle on the reflection intensity for Aluminum and 

black foam swatches. The view angle was varied from 0  to 

45°.  Fig. 9 shows the Beckmann and Gaussian model 

behavior in comparison with the experimental data. The 

blue discrete points represent the experimentally measured 

intensity response and the red line represents the Beckmann 

model with B = 300. The Gaussian model with m=0.04 is 

also shown. These two parameter values produced the best 

fit to the measured reflection intensity. No noise filtering 

was performed before plotting the experimental data.  Both 

the models captured the view dependence qualitatively. 

However, the entire data set had to be used for finding the 

best fit parameters.  

 

 

 

V. SEGMENTATION OF POINT CLOUDS 

In this section we consider a LIDAR scan of an outdoor 

scene. The point cloud with image registration and intensity 

data is shown in Fig. 10. The figure shows {x,y,z,r,g,b} data 

in an image format. The scene consists of a sculpture, its 

foundation and several landscape features. The ambient 

lighting substantially affects the quality of the image and 

details of the sculpture are barely discernable. Due to the 

time of the day, lighting is bright on the opposite side from 

the camera position shown in the figure.  

  The intensity data of the scene were processed for diffuse 

and specular reflection parameters in the Blinn-Phong 

model. The diffuse reflection coefficient    is computed and 

plotted for the entire scene using a color map. In this color 

scale, red denotes   =1 and blue   =0.   Fig. 11 shows the 

map of the diffuse reflection coefficient   . The figure 

clearly delineates the sculpture from the scene.  The 

reflection returns also shows several features (shrubs 

beneath the sculpture) under exposed in the camera image.  

Therefore the diffuse reflection component can potentially 

 
Fig. 8. Specular reflection coefficient KBP for various materials with 

n=2. 
 

Fig. 6. Reflection intensity for a black foam board 

Black Foam

 
Fig. 7. Diffuse reflection coefficient    for 905 nm incident light for 

various materials. 

 
Fig. 9. Fits for aluminum swatch intensity response with Beckmann 

and Gaussian models 
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be used to delineate features in point clouds that are 

otherwise obscured due to lighting conditions.  

 

 
Fig. 10. Point cloud with image data of an outdoor scene 

 
Fig. 11. Diffuse reflection coefficient (Kd) mapped on the point cloud 

 
Fig. 12. Diffuse reflection coefficient map (Kd) shown for another point 

cloud of the same scene. 

 

 

The LIDAR was moved to a second location and portions of 

the scene shown in Fig. 10 rescanned. The reflection 

intensity was again processed to determine   variation in 

the scene. Fig. 11 shows the map of the sculpture with the 

   values plotted as a color. Material reflection response was 

qualitatively similar between the two scans and the    

values were similar. 

A basic Receiver Operating Characteristic (ROC) analysis 

was conducted to evaluate the effectiveness of the classifier. 

Points are manually into positive (belongs to statue) and 

negative (doesn’t belong to the statue) sets. The points 

analyzed were 99695 negative and 3736 positive. The points 

were then reclassified based on Kd. A mean value of Kd was 

computed for the positive set and True Positives, False 

Positives, True Negatives and False Negatives were 

determined based on the Kd distribution of the point set. Of 

the nearly 100,000 classified points, 69.8% were accurately 

classified and the sensitivity to True Positives was found to 

be 94.6%.  

 

VI. CONCLUDING REMARKS 

In the paper, we present a methodology for using the 

LIDAR reflection return values for segmenting point clouds 

based on the diffuse and specular reflection behavior. We 

performed several experiments to under the behavior various 

surfaces and the performance of the illumination models in 

characterizing the LIDAR reflection data.  The paper shows 

the use of diffuse reflection coefficient    in a Lambertian 

reflection model as an attribute to segment point clouds. 

Work is in progress for determining the performance of 

specular reflection parameters. We are currently pursuing 

robust determination of surface normals from point cloud 

data, which leads to an accurate determination of the 

viewing angle for each point. We expect that the scatter in 

the measured reflection intensity vs. view angle response 

will decrease considerably with robust normal computation 

and leads to better characterization of specular reflection. 

The use of Ks may be appropriate when the scene contains 

several shiny objects. The variations in the diffuse reflection 

coefficient    may be adequate when the scene has several 

dull objects.  
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