
978-1-4577-1343-9/12/$26.00 ©2015 IEEE

Motion Model Binary Switch for MonoSLAM

Akin Tatoglu, Kishore Pochiraju
Design and Manufacturing Institute, Mechanical Engineering,

Stevens Institute of Technology
Hoboken, NJ 07030 USA

atatoglu@stevens.edu

Abstract— Current Monocular Simultaneous Localization and
Mapping (MonoSLAM) methodologies use constant velocity and
smooth motion assumptions. If the motion consists of rapid
accelerations, decelerations or stops, the position estimates
become erroneous and unstable. Mobile robots require frequent
stops due to mission dictated or safety reasons. With the objective
of using MonoSLAM to localize a mobile robot, we determined
the effectiveness of trajectory estimation for a typical robot
moving with constant velocity and stopping to execute missions.
Experiments were performed with a camera mounted on a 3-axis
translational robot and several path profiles with brief stops were
executed. The trajectory estimated with a MonoSLAM algorithm
is compared with the known motion profile. As the stop causes
significant error and drift in the position estimates, we modified
the constant velocity motion model to incorporate a stop
detection method. An optical flow based stop detection model was
formulated and implemented in conjunction with MonoSLAM.
Velocity update is modified when a stop or start is detected by
optical flow. By adaptively switching between constant velocity
and stop models, the trajectory estimate is seen to be more
accurate and stable after an intermittent stop. Details of the
adaptive switching method and the performance of the modified
MonoSLAM are described in this paper.

Keywords- MonoSLAM, localization, motion model, affine
optical flow

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) generates
a map of the unknown surroundings and estimates the location
of a robot by detecting and tracking landmarks using a set of
sensors and stochastic estimation techniques. Sensors used
typically are stereo camera pairs, LIDARs supported by
additional sensors like odometer or IMU [1-4]. If the objective
is to estimate the robot pose, a sparse landmark map may be
sufficient sufficient [5]. SLAM process is a series of motion
prediction, measurement and update steps and incorporates the
controller input in the prediction step. For mobile robots with
controllers determining the motion, the controller input will be
utilized in the prediction step. However, if motion is generated
without a formal controller (e.g. camera moved by a human
hand), SLAM requires a motion model.

In monocular SLAM only a single camera is used as a
sensor [6]. Advantage of a single camera is that it is flexible
and cost effective. MonoSLAM framework [7] requires that the
motion be smooth and the velocity remains constant through
out the motion profile. Therefore, the accelerations and
decelerations required to start and stop the robot contradict the
constant velocity assumptions.

SLAM methods also track the pose of the robot with a six
degrees of freedom (DOF) robot position state. The motion of a
mobile robot is typically translational or rotational, therefore
one or more of the degrees of freedom may become stationary
with time (or come to a stop). Therefore, in a motion model
each of the components of the linear and angular velocity may
have to be treated independently. Adding noise to all DOF of
the system simultaneously will increase uncertainty and reduce
accuracy of trajectory estimate [6].

A depth hypothesis is required for establishing a 3D
position from 2D single camera image. Random Sample
Consensus (RANSAC) [8] is used to establish the depth
estimates for each of the observed landmarks. A landmark is
expected to be detected multiple times before it is used in depth
determination. This is called delayed landmark registration. In
[9], a Bayesian estimation step for motion model for more
efficient trajectory estimation is used. Typically the motion
models assign the same linear and angular velocity
assumptions to all the active DOF.

In order to improve the motion model used in MonoSLAM,
a local constant velocity rather than global constant velocity
was used [10]. Methods utilizing vision systems to solve
localization problem with including visual odometry [11],
optical flow supported by Rao-Blackwellized Particle Filter
(RBPF) SLAM with a stereo camera [12] and utilizing an IMU
[13] can also be found in the literature. Optical flow with a
Kalman filter has also been used [14].

Most of the earlier MonoSLAM frameworks use a motion
model that adds same velocity increments to all the DOF [7-9].
However, while a mobile robot is moving, there might be a
dominant DOFs and stationary DOFs. Identifying and tailoring
the motion models by separating the stationary DOFs from
non-stationary ones is expected to increase the localization
accuracy.

There are two goals for this effort. The first goal is to
characterize the performance of MonoSLAM with a constant
velocity motion model for motion profiles with an intermittent
stop. The second goal is to update the motion prediction
methods by detecting a stationary DOF using image processing
techniques.

II. MONOSLAM WITH SMOOTH MOTION

Constant velocity motion model for MonoSLAM assumes
that observer is moving with a constant velocity with an
additive linear and angular acceleration noise. Since motion is
generated by an uncharacterized source, at each prediction step,

it assumes the controller input based on the assumption that
robot will move with the same velocity (both linear and
angular). This velocity is the sum of estimated velocity at the
previous step and motion noise defined by (8).

A. System State Definition and Predictions

Overall system state includes robots linear and angular
pose, its velocity, positions of landmarks and state covariance
matrices. The 6-DOF position state of the robot is given by

௩࢞ ൌ ோ൧ܟ	ୋܞ	ୋୖܙ	ୋ࢖ൣ
୘
ൌ ሾݔ	ݕ	ݖ	ݍ଴ݍଵݍଶݍଷܞୋܟோ	ሿ் (1)

where subscript {v} defines the current state and superscript
{G} and {R} stand for global frame and robot frame.	 pୋ is the
position of the robot about global frame. qୋୖ defines the
orientation of the robot with four quaternions. Robot’s state
also includes ܞୋ and ܟୗ, linear and angular velocity vectors. In
the first step zero initial values are assigned to these
parameters, which indicates that robot frame is coinciding with
global frame and the robot is idle. In the subsequent steps these
values are assigned by the output of EKF update step.
Landmark position vector is given by

௜࢟ ൌ 	 ሺݔ௜ ௜ݕ (2)	௜ሻ்ݖ

where ࢟௜ is a landmark with an index i. After a landmark is
successfully tracked for a period of time, it is registered into the
map and used for localization estimations. At first stage it is
called semi-definite landmark and at the second stage it is
called definite landmark [8]. By combining these two vectors in
(1) and (2), system state is defined by

	࢞ ൌ 	 ቎

௩࢞
ଵ࢟
ଶ࢟
⋮

቏ (3)

The state uncertainty is given by the covariance matrix:

ࡼ ൌ 		 ൦

௫ܲ௫

௬ܲభ௫

௬ܲమ௫

⋮

	

௫ܲ௬భ

௬ܲభ௬భ

௬ܲమ௬భ
⋮

௫ܲ௬మ

௬ܲభ௬మ

௬ܲమ௬మ
⋮

	

⋯
……
⋱
൪ (4)

Applying a controller input processes prediction of state vector

ෝ௡௘௪࢞ ൌ fሺxො, uሻ (5)

The covariance of the state uncertainty is

௡௘௪ࡼ ൌ 	
డࢌ

డ௫
	ࡼ	

డࢌ

డ௫

்
൅ ܳ௏ (6)

where ࡼ௡௘௪ is new covariance matrix after state is predicted.
Calculation of ܳ௏ will be defined in state uncertainty section.

B. State Predictions with Constant Velocity Model

Constant velocity motion model is applied during the state
prediction. This model assumes that in every step, robot will
move with the same velocity that was estimated on the
previous step. Constant velocity motion model state prediction
is as in

fሺܠ୴, uሻ ൌ 	

ۏ
ێ
ێ
ێ
ۍ
ீ࢝ࢋ࢔࢖ 	
ோீ࢝ࢋ࢔ࢗ

ீ࢝ࢋ࢔࢜

࢝ࢋ࢔࢝
ோ ے

ۑ
ۑ
ۑ
ې
ൌ 	

ۏ
ێ
ێ
ێ
ۍ

ீ࢖ ൅ ሺீ࢜ ൅	ீࢂ	ሻ∆ݐ
ௌீࢗ 	ൈ ோݓሺሺࢗ ൅	ષோ	ሻ∆ݐሻ

ሺீ࢜ ൅ ሻீࢂ
ሺݓோ ൅ ષோሻ ے

ۑ
ۑ
ۑ
ې


Constant velocity motion model works sufficiently well
when the robot’s motion is continuous and smooth. However,
deceleration occurring before the stop might cost the algorithm
to completely lose the track. Even it doesn’t lose track, two
cases will occur. If stop occurs at a short period of time less
than landmark buffering delay, algorithm will not even be
aware of the stop action. If stop occurs for a longer period of
time, the detection of stop in the estimated trajectory is
observed with latency. Also, if there is only single dominant
DOF, this knowledge should be applied to the process. These
reasons require another model that can handle these situations.
Similar situation will occur during random acceleration of the
robot.

C. State Uncertainty for Constant Velocity Model

MonoSLAM adds acceleration as noise vector which is
given by

ത݊ ൌ 		 ሾVୋ	Ωୗ	ሿ୘ ൌ 	 ሺሾ݈஺∆t			α୅∆t	ሿሻ୘ (8)

where Vୋ	and Ωୖ are the same inputs as used in (7). These
values are initially assigned with linear and angular
acceleration sigma squares multiplied by Δt. This noise vector
is also used for prediction of state transition probability:

Q୴		 ൌ 	
ப୶ො౤౛౭
ப୬

	P୬	
ப୶ො౤౛౭

౐

ப୬
 (9)

where P୬	is the process noise.

D. State Predictions with Optical Flow

We would like process the optical flow determined
information after EKF Update step and reflect the output
during the prediction step. A controller input is defined to
process these outputs.

ෝைி࢛ ൌ ቈ
ොைிಽݑ
ොைிೈݑ

቉ ൌ ൣ ௫ܸ
ீ

௬ܸ
ீ

௭ܸ
௭ோ൧ߗ௬ோߗ௫ோߗீ

்
	 (10)

which contains output of linear and angular optical flow values.
Calculations of these values are represented in Section III. The
state prediction with optical flow controller input is calculated
as in

fሺܠ୴, ොைிሻݑ ൌ 		

ۏ
ێ
ێ
ێ
ۍ ீ࢖ ൅ ൫ீ࢜ ൅ ݐ∆൯	ොைிಽݑ

ௌீࢗ 	ൈ ሻݐ∆൯	ොைிೈݑௌ൅ݓሺ൫ࢗ

൫ீ࢜ ൅ ොைிಽ൯ݑ

൫ݓௌ ൅ ොைிೈ൯ݑ ے
ۑ
ۑ
ۑ
ې



where fሺܠ୴, ොைிሻ uses the controller input assigned by opticalݑ
flow. ீ࢜ and ݓௌ are the linear and angular velocities
calculated at EKF Update step.

Figure 2. Experimental Scene Sample for Affine Optical Flow and
MonoSLAM

Figure 1. Optical Flow (OF) binary switch and MonoSLAM processes

MonoSLAM

Image
Stream

Affine Optical
Flow

Im
ag
e
(n
)

Prediction

Measurement

EKF Update

III. AFFINE OPTICAL FLOW

The affine optical flow algorithm [15] correlates two
consecutive images and calculates spatial and temporal
gradients of changes. Then it applies Lucas-Kanade method
[16] to solve the optical flow equation with sub-pixel accuracy.
Algorithm first calculates estimated velocity of a pixel by:

	ൣV୓୊_୶	V୓୊_୷൧ ൌ ሾx	y	1ሿ ∗ 	቎
d ൅	sଵ sଶ ൅ w୰
sଶ െ w୰ d െ sଵ
V୶଴ V୷଴

቏ (12)

where x and y are the position of a pixel on the image. “d” is
dilation rate, “sଵ&sଶ” are shear rates, “w୰” is the rotation rate
and “V୶଴” and “V୷଴” are the optical flow of the corner of the
image. V୓୊_୶	 and V୓୊_୷ are the “optical flow velocity” in
pixels/s on x and y direction. Also, dilation is the change about
the z axis.

Determination of pixel velocity varies by the pixel location.
The center pixel is chosen since the image has a radial
distortion on the sides. However selecting the center point itself
will miss a fixed point rotation about Zୖ	axis. In this case, w୰
rotation rate must be calculated at another point on image. We
have used center point for optical flow velocity calculation and
w୰	is calculated on left top corner.

Affine Optical Flow then assigns the controller input ݑොைி as
shown below:

ොைிಽݑ ൌ 	

ۉ

ۈ
ۈ
ۈ
ۇ

௫ܸ
ீ ൌ 	 ൜

݈஺௑∆t	if	V୓୊_୶ ൐ ݄ܶ
െ࢜௫ீ	݂݅	V୓୊_୶ ൑ ݄ܶ	

ൠ

௬ܸ
ீ ൌ 	 ቊ

݈஺௒∆t	if	V୓୊_୷ ൐ ݄ܶ

െ࢜௬ீ	݂݅	V୓୊_୷ ൑ ݄ܶ	
ቋ

௭ܸ
ீ ൌ 	 ൜

݈஺௓∆t	if	d ൐ ݄ܶ
െ࢜௭ீ	݂݅	d ൑ ݄ܶ	

ൠ
ی

ۋ
ۋ
ۋ
ۊ

 (13)

ොைிೈݑ ൌ 	

ۉ

ۈ
ۈ
ۈ
ۇ
௫ோߗ ൌ 	 ൜

α஺௑∆t	if	sଵ ൐ ݄ܶ
െݓ௫ீ	݂݅	sଵ ൑ ݄ܶ	

ൠ

௬ோߗ ൌ 	 ൜
α஺௒∆t	if	sଶ ൐ ݄ܶ
െݓ௬ீ	݂݅	sଶ ൑ ݄ܶ	ൠ

௭ோߗ ൌ 	 ൜
α஺௓∆t	if	w୰ ൐ ݄ܶ
െݓ௭ீ	݂݅	w୰ ൑ ݄ܶ	

ൠ
ی

ۋ
ۋ
ۋ
ۊ

 (14)

where {Th} stands for threshold. If optical flow calculated V୓୊
is greater than the threshold, then ܸீ component is set to
predefined linear acceleration noise value ݈஺	multiplied by ∆t.
If the velocity detected is below a threshold, the controller
input is modified to nullify the velocity component.

A. Algorithm for Stop Detection with Affine Optical Flow

The MonoSLAM and optical flow algorithms are executed
concurrently. Affine optical flow determines displacement of
the image in x and y direction as well as dilation rate, shear
values and rotation rates. By using all these parameters it

calculates ࢛ෝைி as given in (13) and (14). This controller input
is used in the next prediction step.

Fig. 1 shows the data flow in the developed method. The
affine optical flow modifies the controller input used in the
prediction step.

IV. EXPERIMENTAL SETUP

In order to generate the ground truth we assembled a
camera on a 3DOF linear actuator robot. It runs on a worm gear
driven by a stepper motor which results with highly accurate
velocity control. A 30fps off-the-shelf camera with 320x240
pixels is used. The images are converted to grayscale. Purpose

of the experiment is to analyze the behavior of MonoSLAM
with constant velocity model. In order to reduce the landmark
identification issues a texture rich environment is used. Fig. 2
shows a sample scene and Fig. 3 shows the system used for
experiments. The camera is mounted to the interface on the
machine.

Motions generated have three sections starting with STOP
[4 s.], followed by constant velocity [10 s.] and then STOP for
varying durations [2, 4, 8 s.]. Fig. 4 shows generic structure of
the motion profiles.

Figure 3. 3-DOF translational robot to apply several path profiles

Figure 6. Affine Optical Flow Rotational Output

‐0.0005

‐0.0003

‐0.0001

0.0001

0.0003

0.0005

0 5 10 15 20 25 30 35

Rotation

Shear X

ShearY
TIME

A
ff
in
e
 O
p
ti
ca
l F
lo
w
 A
gn
u
la
r
V
e
lo
ci
ty
 (
p
ix
e
ls
/s
)

Figure 5. Affine Optical Flow Output Translational Output

‐0.1

‐0.08

‐0.06

‐0.04

‐0.02

0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20 25 30 35

VOFx

VOFy

Dilation

TIME

A
ff
in
e
O
p
ti
ca
l F
lo
w
 V
el
o
ci
ty
 (
p
ix
el
s/
s)

THRESHOLD

STOPS

CONSTANT
VELOCITY

Figure 4. Experimental motion profiles with five periods

Figure 7. MonoSLAM contant velocity motion model behavior while
switching between Period A and B.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2 3 4 5 6

GT

2s(CVM)

4s(CVM)

8s(CVM)

D
is
p
le
ce
m
e
n
t(
cm

)

Time (s.)

V. EXPERIMENTAL RESULTS

A. Affine Optical Flow Output

As shown in Fig.1, affine optical flow calculates ࢛ෝைி.These
calculations are conducted by using V୓୊_୶	, V୓୊_୷ and dilation.
Fig. 5 and 6 show linear and angular velocity calculations by
affine optical flow in pixel velocities (px/s) for experiment
with 8 second stop. Fig. 5 clearly shows the durations of stops,
constant velocity and acceleration/decelerations for three
different DOFs.

B. Constant Velocity Model behavior from Period-A to B

MonoSLAM requires warming time for stabilization due to
delayed landmark initialization. In all experiments, there is
initial stop duration for 4 seconds. Fig.7 shows the behavior of
MonoSLAM with constant velocity motion model while
motion is switching between periods A to B. {GT} and
{CVM} stand for ground truth and constant velocity
motion(single model system) respectively. The 2, 4 and 8
defines duration of period-C in Fig.4 for each experiment
processed with single model. During the warming time, it is
expected to see a detection of stop with zero velocity. Even the
velocity is zero; there is a fixed shift between ground truth and
estimated trajectory. After acceleration occurs and motion
starts, even output could catch up with the motion, estimated
velocity (slope) is slower than ground truth.

Figure 8. MonoSLAM contant velocity motion model behavior while
switching between Period B and C.

20

21

22

23

24

25

26

27

28

29

30

12 13 14 15 16

GT(2s) 2s(CVM) 4s(CVM) 8s(CVM)

D
is
p
le
ce
m
e
n
t(
cm

)

Time (s.)

Figure 9. MonoSLAM with optical flow generated controller input
behavior while switching between Period A and B.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2 3 4 5 6

GT

2s

4s

8s

D
is
p
le
ce
m
e
n
t(
cm

)

Time (s.)

Figure 10. MonoSLAM with optical flow generated controller input
behavior while switching between Period B and C.

20

21

22

23

24

25

26

27

28

29

30

12 13 14 15 16

GT 2s 4s 8s

D
is
p
le
ce
m
e
n
t(
cm

)

Time (s.)

Figure 11. Overall displacement plot for five periods. GT: Ground
Truth, 8s(CVM): Single model with 8 s. period-C duration, 8s:

Swithing model with 8 s. period-C duration.

0

5

10

15

20

25

30

35

‐1 4 9 14 19 24 29 34

GT(8s)

8s

8s(CVM)

D
is
p
le
ce
m
e
n
t(
cm

)

Time (s.)

C. Constant Velocity Model behavior from Period-B to C

After constant velocity occurs for 10 seconds, robot stops for
three different time durations. Fig. 8 shows the behavior of
estimated trajectory while switching between periods B and C.
It is observed that MonoSLAM requires some time to detect
stop motion. However, even after stop is detected, it starts
climbing again.

D. Optical Flow Model behavior from Period-A to B

Fig. 9 shows the behavior of estimated trajectory with
optical flow motion model. The 2, 4 and 8 defines duration of
period-C in Fig.4 for each experiment processed with model
switch. Optical flow identifies both the stop and start of the
motion.

E. Optical Flow Model behavior from Period-B to C

Fig. 10 shows the behavior while motion is switching from
period B to C. Velocity at period B seems to be constant.
Figure shows that optical flow detects the stop accurately and
modifies the controller input correctly.

F. Full Trajectory

Fig. 11 shows the overall comparison of 8 seconds stop
experiment for all five periods. MonoSLAM with constant
velocity motion model is seen to be inaccurate after the stop.
On the other hand, after an overshoot, optical flow aided
motion model is setting its speed to zero. Also, after motion is
restarted by changing the direction, optical flow method is
seen to produce appropriate controller inputs to accurately
estimate the trajectory.

VI. CONCLUSION

Detecting a stop is significant for accurately localizing
mobile robots. After a stop, MonoSLAM loses the track. Also,
if we assume a robot is mostly moving forward and no motion
is occurring in an individual axis, removing the acceleration
noise improves the estimation accuracy.

 MonoSLAM with constant velocity motion model drifts
during stops due to the motion model assumptions. In SLAM,
this is typically corrected by encoder or accelerometer inputs.
We investigated the use of optical flow that can detect and
manage stop signs during the motion of the robot without
additional sensor requirements. In addition to that detecting
single axis idle behavior increases the accuracy. Use of total
image processing techniques such as the optical flow to
adaptively change the motion model is seen as an effective way
to estimate robot trajectory with MonoSLAM.

REFERENCES
[1] Zhou X. S., and Roumeliotis S. I., “Determining the robot-to-robot 3D

relative pose using combinations of range and bearing measurements: 14
minimal problems and closed-form solutions to three of them,”
Intelligent Robots and Systems, pp. 2983–2990, 2010.

[2] Paz, L. M., Piniés, P., Tardós, J. D., Neira, J., “Large-scale 6-DOF
SLAM with stereo-in-hand,” Transactions on Robotics, vol. 24, no. 5,
pp. 946–957, 2008.

[3] D. Craciun, N. Paparoditis, F. Schmitt, “Multi-view scans alignment for
3D spherical mosaicing in large-scale unstructured environments”,
Computer Vision and Image Understanding, vol. 114, no. 11, pp. 1248–
1263, November 2010.

[4] Mourikis A. I., Roumeliotis S. I., “A Multi-State Constraint Kalman
Filter for Vision-aided Inertial Navigation,” International Conference on
Robotics and Automation, pp. 3565–3572, 2007.

[5] Klein, G., and D. Murray. “Parallel Tracking and Mapping for Small AR
Workspaces,” 6th IEEE and ACM International Symposium on Mixed
and Augmented Reality, pp. 225 –234, 2007.

[6] Davison A. J., Reid I. D., Molton N. D., Stasse O., “MonoSLAM: Real-
time single camera SLAM,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 29, no. 6, pp. 1052–1067, June 2007.

[7] Davison A., “Real-time simultaneous localisation and mapping with a
single camera,” International Conference on Computer Vision, pp. 1403-
1410, 2003.

[8] Civera J., Grasa O., “1 Point RANSAC for extended Kalman filtering:
Application to real time structure from motion and visual odometry,”
Journal of Field Robotics, vol. 27, no. 5, pp. 609-631, 2010.

[9] J. Civera, A. J. Davison, and J. M. M. Montiel, “Interacting multiple
model monocular SLAM,” 2008 IEEE Int. Conf. Robot. Autom., pp.
3704–3709, May 2008.

[10] Hesch J. A., Roumeliotis S. I., “Consistency analysis and improvement
for single-camera localization,” Computer Society Conference
on Computer Vision and Pattern Recognition Workshops, pp. 15-22,
2012.

[11] D. Nistér, O. Naroditsky, J. Bergen, “Visual odometry,” in Computer
Vision and Pattern Recognition, 2004.

[12] P. Elinas, R. Sim, and J. J. Little, “σSLAM: stereo vision SLAM using
the Rao-Blackwellised particle filter and a novel mixture proposal
distribution,” Proc. 2006 IEEE Int. Conf. Robot. Autom. 2006. ICRA
2006., no. May, pp. 1564–1570, 2006.

[13] F. Kendoul, I. Fantoni, and K. Nonami, “Optic flow-based vision system
for autonomous 3D localization and control of small aerial vehicles,”
Rob. Auton. Syst., vol. 57, no. 6–7, pp. 591–602, Jun. 2009.

[14] X. Song, L. D. Seneviratne, and K. Althoefer, “A Kalman Filter-
Integrated Optical Flow Method for Velocity Sensing of Mobile
Robots,” IEEE/ASME Trans. Mechatronics, vol. 16, no. 3, pp. 551–563,

Jun. 2011.
[15] Young D. S., “First-order optic flow and the control of action,”

European Conference on Visual Perception, 2000.
[16] Lucas B., Kanade T., “An iterative image registration technique with an

application to stereo vision,” International Joint Conferences on
Artificial Intelligence, vol. 81, pp. 674-679, 1981.

