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Abstract— Current Monocular Simultaneous Localization and 
Mapping (MonoSLAM) methodologies use constant velocity and 
smooth motion assumptions. If the motion consists of rapid 
accelerations, decelerations or stops, the position estimates 
become erroneous and unstable. Mobile robots require frequent 
stops due to mission dictated or safety reasons. With the objective 
of using MonoSLAM to localize a mobile robot, we determined 
the effectiveness of trajectory estimation for a typical robot 
moving with constant velocity and stopping to execute missions. 
Experiments were performed with a camera mounted on a 3-axis 
translational robot and several path profiles with brief stops were 
executed. The trajectory estimated with a MonoSLAM algorithm 
is compared with the known motion profile. As the stop causes 
significant error and drift in the position estimates, we modified 
the constant velocity motion model to incorporate a stop 
detection method. An optical flow based stop detection model was 
formulated and implemented in conjunction with MonoSLAM.  
Velocity update is modified when a stop or start is detected by 
optical flow. By adaptively switching between constant velocity 
and stop models, the trajectory estimate is seen to be more 
accurate and stable after an intermittent stop.  Details of the 
adaptive switching method and the performance of the modified 
MonoSLAM are described in this paper. 
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I. INTRODUCTION 

Simultaneous Localization and Mapping (SLAM) generates 
a map of the unknown surroundings and estimates the location 
of a robot by detecting and tracking landmarks using a set of 
sensors and stochastic estimation techniques. Sensors used 
typically are stereo camera pairs, LIDARs supported by 
additional sensors like odometer or IMU [1-4]. If the objective 
is to estimate the robot pose, a sparse landmark map may be 
sufficient sufficient [5].  SLAM process is a series of motion 
prediction, measurement and update steps and incorporates the 
controller input in the prediction step. For mobile robots with 
controllers determining the motion, the controller input will be 
utilized in the prediction step. However, if motion is generated 
without a formal controller (e.g. camera moved by a human 
hand), SLAM requires a motion model.  

In monocular SLAM only a single camera is used as a 
sensor [6]. Advantage of a single camera is that it is flexible 
and cost effective. MonoSLAM framework [7] requires that the 
motion be smooth and the velocity remains constant through 
out the motion profile. Therefore, the accelerations and 
decelerations required to start and stop the robot contradict the 
constant velocity assumptions.  

SLAM methods also track the pose of the robot with a six 
degrees of freedom (DOF) robot position state. The motion of a 
mobile robot is typically translational or rotational, therefore 
one or more of the degrees of freedom may become stationary 
with time (or come to a stop).  Therefore, in a motion model 
each of the components of the linear and angular velocity may 
have to be treated independently. Adding noise to all DOF of 
the system simultaneously will increase uncertainty and reduce 
accuracy of trajectory estimate [6].  

A depth hypothesis is required for establishing a 3D 
position from 2D single camera image. Random Sample 
Consensus (RANSAC) [8] is used to establish the depth 
estimates for each of the observed landmarks. A landmark is 
expected to be detected multiple times before it is used in depth 
determination. This is called delayed landmark registration. In 
[9], a Bayesian estimation step for motion model for more 
efficient trajectory estimation is used. Typically the motion 
models assign the same linear and angular velocity 
assumptions to all the active DOF.  

In order to improve the motion model used in MonoSLAM, 
a local constant velocity rather than global constant velocity 
was used [10]. Methods utilizing vision systems to solve 
localization problem with including visual odometry [11], 
optical flow supported by Rao-Blackwellized Particle Filter 
(RBPF) SLAM with a stereo camera [12] and utilizing an IMU 
[13] can also be found in the literature. Optical flow with a 
Kalman filter has also been used [14].  

Most of the earlier MonoSLAM frameworks use a motion 
model that adds same velocity increments to all the DOF  [7-9]. 
However, while a mobile robot is moving, there might be a 
dominant DOFs and stationary DOFs. Identifying and tailoring 
the motion models by separating the stationary DOFs from 
non-stationary ones is expected to increase the localization 
accuracy.  

There are two goals for this effort.  The first goal is to 
characterize the performance of MonoSLAM with a constant 
velocity motion model for motion profiles with an intermittent 
stop. The second goal is to update the motion prediction 
methods by detecting a stationary DOF using image processing 
techniques. 

II. MONOSLAM WITH SMOOTH MOTION  

Constant velocity motion model for MonoSLAM assumes 
that observer is moving with a constant velocity with an 
additive linear and angular acceleration noise.  Since motion is 
generated by an uncharacterized source, at each prediction step, 



 
 

it assumes the controller input based on the assumption that 
robot will move with the same velocity (both linear and 
angular). This velocity is the sum of estimated velocity at the 
previous step and motion noise defined by (8).  

A. System State Definition and Predictions 

Overall system state includes robots linear and angular 
pose, its velocity, positions of landmarks and state covariance 
matrices. The 6-DOF  position state of the robot is given by 

௩࢞ ൌ ோ൧ܟ	ୋܞ	ୋୖܙ	ୋ࢖ൣ
୘
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where subscript {v} defines the current state and superscript 
{G} and {R} stand for global frame and robot frame.	 pୋ is the  
position of the robot about global frame. qୋୖ  defines the 
orientation of the robot with four quaternions. Robot’s state 
also includes ܞୋ and ܟୗ, linear and angular velocity vectors. In 
the first step zero initial values are assigned to these 
parameters, which indicates that robot frame is coinciding with 
global frame and the robot is idle. In the subsequent steps these 
values are assigned by the output of EKF update step.  
Landmark position vector is given by  

௜࢟ ൌ 	 ሺݔ௜ ௜ݕ                           (2)	௜ሻ்ݖ

where ࢟௜ is a landmark with an index i. After a landmark is 
successfully tracked for a period of time, it is registered into the 
map and used for localization estimations. At first stage it is 
called semi-definite landmark and at the second stage it is 
called definite landmark [8]. By combining these two vectors in 
(1) and (2), system state is defined by 
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The state uncertainty is given by the covariance matrix: 
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Applying a controller input processes prediction of state vector 

ෝ௡௘௪࢞ ൌ fሺxො, uሻ                                 (5) 

The covariance of the state uncertainty is  
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where ࡼ௡௘௪ is new covariance matrix after state is predicted.  
Calculation of ܳ௏ will be defined in state uncertainty section. 

B. State Predictions with Constant Velocity Model 

Constant velocity motion model is applied during the state 
prediction. This model assumes that in every step, robot will 
move with the same velocity that was estimated on the 
previous step. Constant velocity motion model state prediction 
is as in  
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Constant velocity motion model works sufficiently well 
when the robot’s motion is continuous and smooth. However, 
deceleration occurring before the stop might cost the algorithm 
to completely lose the track. Even it doesn’t lose track, two 
cases will occur. If stop occurs at a short period of time less 
than landmark buffering delay, algorithm will not even be 
aware of the stop action. If stop occurs for a longer period of 
time, the detection of stop in the estimated trajectory is 
observed with latency. Also, if there is only single dominant 
DOF, this knowledge should be applied to the process. These 
reasons require another model that can handle these situations. 
Similar situation will occur during random acceleration of the 
robot.  

C. State Uncertainty for Constant Velocity Model 

MonoSLAM adds acceleration as noise vector which is 
given by  
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where Vୋ	and Ωୖ are the same inputs as used in (7). These 
values are initially assigned with linear and angular 
acceleration sigma squares multiplied by Δt. This noise vector 
is also used for prediction of state transition probability: 
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where P୬	is the process noise.  

D. State Predictions with Optical Flow 

We would like process the optical flow determined 
information after EKF Update step and reflect the output 
during the prediction step. A controller input is defined to 
process these outputs.  
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which contains output of linear and angular optical flow values. 
Calculations of these values are represented in Section III. The 
state prediction with optical flow controller input is calculated 
as in 
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where fሺܠ୴,  ොைிሻ uses the controller input assigned by opticalݑ
flow. ீ࢜  and ݓௌ  are the linear and angular velocities 
calculated at EKF Update step.  

 



 
 

Figure 2. Experimental Scene Sample for Affine Optical Flow and 
MonoSLAM 

 
Figure 1. Optical Flow (OF) binary switch and MonoSLAM processes 
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III. AFFINE OPTICAL FLOW 

The affine optical flow algorithm [15] correlates two 
consecutive images and calculates spatial and temporal 
gradients of changes. Then it applies Lucas-Kanade method 
[16] to solve the optical flow equation with sub-pixel accuracy. 
Algorithm first calculates estimated velocity of a pixel by: 

	ൣV୓୊_୶	V୓୊_୷൧ ൌ ሾx	y	1ሿ ∗ 	቎
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where x and y are the position of a pixel on the image. “d” is 
dilation rate, “sଵ&sଶ” are shear rates, “w୰” is the rotation rate 
and “V୶଴” and “V୷଴” are the optical flow of the corner of the 
image. V୓୊_୶	 and  V୓୊_୷  are the “optical flow velocity” in 
pixels/s on x and y direction. Also, dilation is the change about 
the z axis.  

Determination of pixel velocity varies by the pixel location. 
The center pixel is chosen since the image has a radial 
distortion on the sides. However selecting the center point itself 
will miss a fixed point rotation about Zୖ	axis. In this case, w୰ 
rotation rate must be calculated at another point on image. We 
have used center point for optical flow velocity calculation and 
w୰	is calculated on left top corner.  

Affine Optical Flow then assigns the controller input ݑොைி as 
shown below: 
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where {Th} stands for threshold. If optical flow calculated V୓୊ 
is greater than the threshold, then ܸீ  component is set to 
predefined linear acceleration noise value ݈஺	multiplied by ∆t. 
If the velocity detected is below a threshold, the controller 
input is modified to nullify the velocity component.  

A.  Algorithm for Stop Detection with Affine Optical Flow 

The MonoSLAM and optical flow algorithms are executed 
concurrently. Affine optical flow determines displacement of 
the image in x and y direction as well as dilation rate, shear 
values and rotation rates. By using all these parameters it 

calculates ࢛ෝைி as given in (13) and (14). This controller input 
is used in the next prediction step.  

Fig. 1 shows the data flow in the developed method. The 
affine optical flow modifies the controller input used in the 
prediction step.  

IV. EXPERIMENTAL SETUP 

In order to generate the ground truth we assembled a 
camera on a 3DOF linear actuator robot. It runs on a worm gear 
driven by a stepper motor which results with highly accurate 
velocity control.  A 30fps off-the-shelf camera with 320x240 
pixels is used. The images are converted to grayscale. Purpose 

of the experiment is to analyze the behavior of MonoSLAM 
with constant velocity model. In order to reduce the landmark 
identification issues a texture rich environment is used. Fig. 2 
shows a sample scene and Fig. 3 shows the system used for 
experiments. The camera is mounted to the interface on the 
machine.  

Motions generated have three sections starting with STOP 
[4 s.], followed by constant velocity [10 s.] and then STOP for 
varying durations [2, 4, 8 s.]. Fig. 4 shows generic structure of 
the motion profiles. 



 
 

 
Figure 3. 3-DOF translational robot to apply several path profiles  

Figure 6. Affine Optical Flow Rotational Output  
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Figure 5. Affine Optical Flow Output Translational Output 
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Figure 4. Experimental motion profiles with five periods 

Figure 7. MonoSLAM contant velocity motion model behavior while 
switching between Period A and B. 
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V. EXPERIMENTAL RESULTS 

A. Affine Optical Flow Output 

As shown in Fig.1, affine optical flow calculates ࢛ෝைி.These 
calculations are conducted by using  V୓୊_୶	, V୓୊_୷ and dilation. 
Fig. 5 and 6 show linear and angular velocity calculations by 
affine optical flow in pixel velocities (px/s) for experiment 
with 8 second stop. Fig. 5 clearly shows the durations of stops, 
constant velocity and acceleration/decelerations for three 
different DOFs.  

B. Constant Velocity Model behavior from Period-A to B 

MonoSLAM requires warming time for stabilization due to 
delayed landmark initialization. In all experiments, there is 
initial stop duration for 4 seconds. Fig.7 shows the behavior of 
MonoSLAM with constant velocity motion model while 
motion is switching between periods A to B. {GT} and 
{CVM} stand for ground truth and constant velocity 
motion(single model system) respectively. The 2, 4 and 8 
defines duration of period-C in Fig.4 for each experiment 
processed with single model.  During the warming time, it is 
expected to see a detection of stop with zero velocity. Even the 
velocity is zero; there is a fixed shift between ground truth and 
estimated trajectory. After acceleration occurs and motion 
starts, even output could catch up with the motion, estimated 
velocity (slope) is slower than ground truth. 



 
 

Figure 8. MonoSLAM contant velocity motion model behavior while 
switching between Period B and C. 
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Figure 9. MonoSLAM with optical flow generated controller input 
behavior while switching between Period A and B. 
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Figure 10. MonoSLAM with optical flow generated controller input 
behavior while switching between Period B and C.

20

21

22

23

24

25

26

27

28

29

30

12 13 14 15 16

GT 2s 4s 8s

D
is
p
le
ce
m
e
n
t(
cm

)

Time (s.)

Figure 11. Overall displacement plot for five periods. GT: Ground 
Truth, 8s(CVM): Single model with 8 s. period-C duration, 8s: 
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C. Constant Velocity Model behavior from Period-B to C 

After constant velocity occurs for 10 seconds, robot stops for 
three different time durations.  Fig. 8 shows the behavior of 
estimated trajectory while switching between periods B and C. 
It is observed that MonoSLAM requires some time to detect 
stop motion. However, even after stop is detected, it starts 
climbing again.  

D. Optical Flow Model behavior from Period-A to B 

Fig. 9 shows the behavior of estimated trajectory with 
optical flow motion model. The 2, 4 and 8 defines duration of 
period-C in Fig.4 for each experiment processed with model 
switch.  Optical flow identifies both the stop and start of the 
motion. 

 
 

 

E. Optical Flow Model behavior from Period-B to C 

Fig. 10 shows the behavior while motion is switching from 
period B to C. Velocity at period B seems to be constant. 
Figure shows that optical flow detects the stop accurately and 
modifies the controller input correctly.  

 

F. Full Trajectory  

Fig. 11 shows the overall comparison of 8 seconds stop 
experiment for all five periods. MonoSLAM with constant 
velocity motion model is seen to be inaccurate after the stop. 
On the other hand, after an overshoot, optical flow aided 
motion model is setting its speed to zero. Also, after motion is 
restarted by changing the direction, optical flow method is 
seen to produce appropriate controller inputs to accurately 
estimate the trajectory.  

 
 

VI. CONCLUSION 

Detecting a stop is significant for accurately localizing 
mobile robots. After a stop, MonoSLAM loses the track. Also, 
if we assume a robot is mostly moving forward and no motion 
is occurring in an individual axis, removing the acceleration 
noise improves the estimation accuracy. 



 
 

 MonoSLAM with constant velocity motion model drifts 
during stops due to the motion model assumptions. In SLAM, 
this is typically corrected by encoder or accelerometer inputs. 
We investigated the use of optical flow that can detect and 
manage stop signs during the motion of the robot without 
additional sensor requirements. In addition to that detecting 
single axis idle behavior increases the accuracy. Use of total 
image processing techniques such as the optical flow to 
adaptively change the motion model is seen as an effective way 
to estimate robot trajectory with MonoSLAM. 
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